Example 5a: Transformer Training (PyTorch-Style)#

We’ll build a small Transformer encoder for a synthetic sequence classification task: given a sequence of token embeddings, predict which class it belongs to.

The model uses Nabla’s built-in TransformerEncoderLayer, Embedding, and MultiHeadAttention modules.

[1]:
import numpy as np

import nabla as nb

print("Nabla Transformer Training — PyTorch-style")
Nabla Transformer Training — PyTorch-style

1. Positional Encoding#

We’ll use sinusoidal positional encoding, computed as a fixed buffer.

[2]:
def make_positional_encoding(max_len: int, d_model: int) -> np.ndarray:
    """Sinusoidal positional encoding."""
    pe = np.zeros((max_len, d_model), dtype=np.float32)
    position = np.arange(0, max_len, dtype=np.float32)[:, np.newaxis]
    div_term = np.exp(
        np.arange(0, d_model, 2, dtype=np.float32) * -(np.log(10000.0) / d_model)
    )
    pe[:, 0::2] = np.sin(position * div_term)
    pe[:, 1::2] = np.cos(position * div_term)
    return pe  # (max_len, d_model)

2. Define the Model#

Our TransformerClassifier is an nb.nn.Module subclass with these components:

Component

Purpose

nb.nn.Embedding

Maps token IDs → dense vectors

Sinusoidal PE

Encodes position information (fixed, not learned)

nb.nn.TransformerEncoderLayer × N

Self-attention + feed-forward blocks

nb.nn.Linear

Classification head

The __init__ method creates these components; forward chains them together.

[3]:
class TransformerClassifier(nb.nn.Module):
    """Transformer encoder for sequence classification."""

    def __init__(self, vocab_size, d_model, num_heads, num_layers,
                 num_classes, max_len=128, dim_feedforward=128):
        super().__init__()
        self.d_model = d_model

        # --- Embeddings ---
        self.embedding = nb.nn.Embedding(vocab_size, d_model)
        pe_np = make_positional_encoding(max_len, d_model)
        self.pe = nb.Tensor.from_dlpack(pe_np)  # fixed, not learned

        # --- Encoder stack ---
        self.layers = []
        for i in range(num_layers):
            layer = nb.nn.TransformerEncoderLayer(
                d_model=d_model, num_heads=num_heads,
                dim_feedforward=dim_feedforward, dropout=0.0,
            )
            setattr(self, f"encoder_{i}", layer)
            self.layers.append(layer)

        # --- Classifier ---
        self.classifier = nb.nn.Linear(d_model, num_classes)

    def forward(self, token_ids):
        # Embed + positional encoding
        x = self.embedding(token_ids)
        seq_len = token_ids.shape[-1]
        pe = nb.slice_tensor(self.pe, start=(0, 0), size=(seq_len, self.d_model))
        x = x + pe

        # Encoder layers
        for layer in self.layers:
            x = layer(x)

        # Mean pool + classify
        return self.classifier(nb.mean(x, axis=-2))

3. Create Synthetic Data#

Generate a simple classification task:

  • Sequences of random token IDs

  • Labels based on a rule (e.g., majority token determines class)

[4]:
np.random.seed(42)

vocab_size = 20
seq_len = 8
num_classes = 3
n_samples = 150
d_model = 32
num_heads = 4
num_layers = 2

# Generate random token sequences
token_ids_np = np.random.randint(0, vocab_size, (n_samples, seq_len)).astype(np.int64)

# Labels: class = (sum of tokens) mod num_classes
labels_np = (token_ids_np.sum(axis=1) % num_classes).astype(np.int64)

# One-hot encode labels
labels_onehot_np = np.zeros((n_samples, num_classes), dtype=np.float32)
labels_onehot_np[np.arange(n_samples), labels_np] = 1.0

token_ids = nb.Tensor.from_dlpack(token_ids_np)
labels = nb.Tensor.from_dlpack(labels_onehot_np)

print(f"Dataset: {n_samples} sequences of length {seq_len}")
print(f"Vocab size: {vocab_size}, Classes: {num_classes}")
print(f"Sample tokens: {token_ids_np[0]}")
print(f"Sample label:  {labels_np[0]}")
Dataset: 150 sequences of length 8
Vocab size: 20, Classes: 3
Sample tokens: [ 6 19 14 10  7  6 18 10]
Sample label:  0

4. Build Model and Optimizer#

[5]:
model = TransformerClassifier(
    vocab_size=vocab_size,
    d_model=d_model,
    num_heads=num_heads,
    num_layers=num_layers,
    num_classes=num_classes,
    max_len=seq_len,
    dim_feedforward=64,
)
model.eval()  # Disable dropout

n_params = sum(p.numel() for p in model.parameters())
print(f"Model: {num_layers} encoder layers, d_model={d_model}, heads={num_heads}")
print(f"Total parameters: {n_params}")

opt_state = nb.nn.optim.adamw_init(model)
Model: 2 encoder layers, d_model=32, heads=4
Total parameters: 17827

5. Training Loop#

[6]:
def loss_fn(model, tokens, targets):
    """Cross-entropy loss on model predictions."""
    logits = model(tokens)
    return nb.nn.functional.cross_entropy_loss(logits, targets)

Train with value_and_grad#

Note: Even in PyTorch-style, Nabla uses functional gradient computationvalue_and_grad computes gradients of the loss with respect to the model parameters (specified by argnums=0). There is no .backward() call.

[7]:
num_epochs = 60
lr = 1e-3

print(f"{'Epoch':<8} {'Loss':<12} {'Accuracy':<10}")
print("-" * 32)

for epoch in range(num_epochs):
    loss, grads = nb.value_and_grad(loss_fn, argnums=0)(model, token_ids, labels)
    model, opt_state = nb.nn.optim.adamw_update(model, grads, opt_state, lr=lr)

    if (epoch + 1) % 10 == 0:
        logits = model(token_ids)
        pred_classes = nb.argmax(logits, axis=-1)
        target_classes = nb.Tensor.from_dlpack(labels_np.astype(np.int64))
        correct = nb.equal(pred_classes, target_classes)
        accuracy = nb.mean(nb.cast(correct, nb.DType.float32)).item()
        print(f"{epoch + 1:<8} {loss.item():<12.4f} {accuracy:<10.2%}")
Epoch    Loss         Accuracy
--------------------------------
10       1.4213       28.67%
20       1.1596       33.33%
30       1.0961       35.33%
40       1.0887       39.33%
50       1.0870       38.67%
60       1.0870       36.67%

6. Compiled Training (Bonus)#

For maximum performance, wrap the training step in @nb.compile.

[8]:
@nb.compile
def compiled_step(model, opt_state, tokens, targets):
    loss, grads = nb.value_and_grad(loss_fn, argnums=0)(model, tokens, targets)
    model, opt_state = nb.nn.optim.adamw_update(
        model, grads, opt_state, lr=1e-3
    )
    return model, opt_state, loss
[9]:
# Fresh model for compiled training
model2 = TransformerClassifier(
    vocab_size=vocab_size, d_model=d_model, num_heads=num_heads,
    num_layers=num_layers, num_classes=num_classes,
    max_len=seq_len, dim_feedforward=64,
)
model2.eval()
opt_state2 = nb.nn.optim.adamw_init(model2)

print(f"Compiled training:")
print(f"{'Step':<8} {'Loss':<12}")
print("-" * 22)

for step in range(30):
    model2, opt_state2, loss = compiled_step(model2, opt_state2, token_ids, labels)
    if (step + 1) % 10 == 0:
        print(f"{step + 1:<8} {loss.item():<12.4f}")

print("\nThe full train step (forward + backward + optimizer) runs as one MAX graph!")
Compiled training:
Step     Loss
----------------------
10       2.9450
20       2.4014
30       2.0130

The full train step (forward + backward + optimizer) runs as one MAX graph!

Summary#

Component

API

Token embedding

nb.nn.Embedding(vocab_size, d_model)

Transformer layer

nb.nn.TransformerEncoderLayer(d_model, heads, ff_dim)

Multi-head attention

nb.nn.MultiHeadAttention(d_model, heads)

Cross-entropy

nb.nn.functional.cross_entropy_loss(logits, targets)

Compiled training

@nb.compile on the full train step