Example 7: 2D Parallel Training (PP + DP)#
This example extends pipeline parallelism with data parallelism:
a 2D device mesh (
dp,pp)sharded parameters and sharded batches
correctness checks against a JAX baseline
[ ]:
import numpy as np
from max.dtype import DType
import nabla as nb
from nabla import ops
from nabla.core.sharding import DeviceMesh, DimSpec
from nabla.ops import communication
from nabla.transforms import vmap
# --- Project Constants ---
DP_SIZE = 2
PP_SIZE = 4
TOTAL_DEVICES = DP_SIZE * PP_SIZE
MICRO_BATCHES = 4
MICRO_BATCH_SIZE = 4 # Total batch size per step
DIM = 16
1. Define 2D Pipeline Helpers#
These functions implement one pp+dp pipeline step and the loop over micro-batches.
[ ]:
def stage_compute(x, w, b):
return ops.relu(ops.matmul(x, w) + b)
def pipeline_step(
current_state, fresh_input, weight_stack, bias_stack, mask_0, step_fn, perm
):
"""Single 2D pipeline step: compute -> shift -> extract -> inject."""
computed = step_fn(current_state, weight_stack, bias_stack)
shifted = communication.ppermute(computed, perm)
res_part = ops.where(mask_0, shifted, ops.zeros_like(shifted))
result = ops.reduce_sum(res_part, axis=0)
next_state = ops.where(mask_0, fresh_input, shifted)
return next_state, result
def pipeline_loop(
padded_inputs,
weight_stack,
bias_stack,
current_state,
mask_0,
step_fn,
perm,
total_steps,
):
results = []
for t in range(total_steps):
# Fetch Input
start_idx = (t, 0, 0)
slice_size = (1, MICRO_BATCH_SIZE, DIM)
fraction = ops.slice_tensor(padded_inputs, start=start_idx, size=slice_size)
fresh = ops.squeeze(fraction, axis=0)
current_state, res = pipeline_step(
current_state, fresh, weight_stack, bias_stack, mask_0, step_fn, perm
)
results.append(res)
return ops.stack(results, axis=0), current_state
2. Run 2D Gradient Check#
Build sharded inputs/weights and compare gradients with a JAX reference.
[ ]:
def test_pp_dp_grad():
mesh = DeviceMesh("2d", (DP_SIZE, PP_SIZE), ("dp", "pp"))
print(f"Running 2D Parallelism Test (DP={DP_SIZE}, PP={PP_SIZE})")
np.random.seed(42)
w_np = np.random.randn(PP_SIZE, DIM, DIM).astype(np.float32)
b_np = np.random.randn(PP_SIZE, DIM).astype(np.float32)
total_steps = MICRO_BATCHES + PP_SIZE
x_np = np.random.randn(MICRO_BATCHES, MICRO_BATCH_SIZE, DIM).astype(np.float32)
y_np = np.random.randn(MICRO_BATCHES, MICRO_BATCH_SIZE, DIM).astype(np.float32)
# Weights sharded on 'pp', replicated on 'dp'
w_spec = [DimSpec.from_raw("pp"), None, None]
b_spec = [DimSpec.from_raw("pp"), None]
# Data sharded on 'dp'
x_padded_np = np.concatenate(
[x_np, np.zeros((PP_SIZE, MICRO_BATCH_SIZE, DIM), dtype=np.float32)], axis=0
)
x_spec = [None, DimSpec.from_raw("dp"), None]
w_sharded = ops.shard(nb.Tensor.from_dlpack(w_np), mesh, w_spec).realize()
b_sharded = ops.shard(nb.Tensor.from_dlpack(b_np), mesh, b_spec).realize()
x_sharded = ops.shard(nb.Tensor.from_dlpack(x_padded_np), mesh, x_spec).realize()
y_sharded = ops.shard(nb.Tensor.from_dlpack(y_np), mesh, x_spec).realize()
state_spec = [DimSpec.from_raw("pp"), DimSpec.from_raw("dp"), None]
state_sharded = ops.shard(
nb.zeros((PP_SIZE, MICRO_BATCH_SIZE, DIM), dtype=DType.float32),
mesh,
state_spec,
).realize()
mask_np = np.eye(PP_SIZE, 1).reshape(PP_SIZE, 1, 1).astype(bool)
mask_spec = [DimSpec.from_raw("pp"), None, None]
mask_sharded = ops.shard(nb.Tensor.from_dlpack(mask_np), mesh, mask_spec).realize()
idx = mesh.axis_names.index("pp")
size = mesh.shape[idx]
perm = []
for dp in range(DP_SIZE):
for src_pp in range(PP_SIZE):
src = dp * PP_SIZE + src_pp
dst = dp * PP_SIZE + (src_pp + 1) % size
perm.append((src, dst))
step_fn = vmap(
stage_compute, in_axes=(0, 0, 0), out_axes=0, spmd_axis_name="pp", mesh=mesh
)
def pipeline_loss(inputs, weights, biases, state, mask, targets):
stream_outputs, _ = pipeline_loop(
inputs, weights, biases, state, mask, step_fn, perm, total_steps
)
indices = ops.arange(PP_SIZE, PP_SIZE + MICRO_BATCHES, dtype=DType.int64)
valid_preds = ops.gather(stream_outputs, indices, axis=0)
diff = valid_preds - targets
return ops.mean(diff * diff)
print("Computing 2D Parallel Gradients...")
from nabla.core.autograd import value_and_grad
grad_fn = value_and_grad(pipeline_loss, argnums=(1, 2))
(loss_nb, (w_grad, b_grad)) = grad_fn(
x_sharded, w_sharded, b_sharded, state_sharded, mask_sharded, y_sharded
)
print(f"Nabla Loss: {loss_nb.item():.6f}")
w_grad_np = w_grad.to_numpy()
b_grad_np = b_grad.to_numpy()
print("Running JAX Reference...")
import jax
import jax.numpy as jnp
def jax_ref(pw, pb, px, py):
def apply(curr, w, b):
return jax.nn.relu(curr @ w + b)
preds = []
for i in range(MICRO_BATCHES):
a = px[i]
for w, b in zip(pw, pb, strict=False):
a = apply(a, w, b)
preds.append(a)
preds = jnp.stack(preds)
return jnp.mean((preds - py) ** 2)
jax_val_grad_fn = jax.value_and_grad(jax_ref, argnums=(0, 1))
loss_jax, (w_ref, b_ref) = jax_val_grad_fn(w_np, b_np, x_np, y_np)
print(f"JAX Loss: {loss_jax:.6f}")
# 7. Compare
print("Nabla Weights Grad Sample:", w_grad_np[0, 0, :3])
print("JAX Weights Grad Sample: ", w_ref[0, 0, :3])
w_diff = np.max(np.abs(w_grad_np - w_ref))
b_diff = np.max(np.abs(b_grad_np - b_ref))
print(f"Max 2D Diff - Weights: {w_diff:.6f}, Bias: {b_diff:.6f}")
if w_diff < 5e-4 and b_diff < 5e-4:
print("✅ SUCCESS: 2D Parallel Gradients Match")
else:
print("❌ FAILURE")
if __name__ == "__main__":
test_pp_dp_grad()