Tutorials#
Interactive Jupyter notebooks to learn Nabla’s features and capabilities through hands-on examples.
Interactive Notebooks
- Understanding Nabla - Program Transformations (Part 1)
- Value-and-Grads (CPU)
- Value-and-Grads (GPU)
- MLP Training (CPU)
- MLP Training (GPU)
- JAX vs. Nabla: Training an MLP (CPU)
- JAX vs. Nabla: Training a Transformer (CPU)
- 1. Imports and Configuration
- 2. Positional Encoding
- 3. Scaled Dot-Product Attention
- 4. Multi-Head Attention
- 5. Position-wise Feed-Forward Network
- 6. Layer Normalization
- 7. Encoder and Decoder Layers
- 8. Embedding Lookup
- 9. Full Transformer Forward Pass
- 10. Loss Function
- 11. Parameter Initialization
- 12. Data Generation
- 13. Optimizer (AdamW)
- 14. JIT-Compiled Training Step & Inference
- 15. JAX Training Run
- 16. Nabla Training Run
- 17. Loss Curves Visualization
- 18. Final Evaluation