Mlp
Multi-Layer Perceptron (MLP) architectures.
-
nabla.nn.architectures.mlp.create_mlp_forward_and_loss(activation='relu')[source]
Create a combined forward pass and loss computation function.
This function factory creates the forward_and_loss function needed
for VJP computation in training loops.
- Parameters:
activation (str) – Activation function for hidden layers
- Returns:
Function that takes inputs and returns loss
- Return type:
Callable
-
nabla.nn.architectures.mlp.create_mlp_config(layers, activation='relu', final_activation=None, init_method='he_normal', seed=42)[source]
Create MLP configuration dictionary.
- Parameters:
layers (list[int]) – List of layer sizes [input, hidden1, hidden2, …, output]
activation (str) – Activation function for hidden layers
final_activation (str | None) – Optional activation for final layer
init_method (str) – Weight initialization method
seed (int) – Random seed for reproducibility
- Returns:
Configuration dictionary with params and forward function
- Return type:
dict
-
class nabla.nn.architectures.mlp.MLPBuilder[source]
Bases: object
Builder class for creating MLP configurations.
-
__init__()[source]
-
with_layers(layers)[source]
Set layer sizes.
-
with_activation(activation)[source]
Set hidden layer activation function.
-
with_final_activation(activation)[source]
Set final layer activation function.
-
with_init_method(method)[source]
Set weight initialization method.
-
with_seed(seed)[source]
Set random seed.
-
build()[source]
Build the MLP configuration.