Metrics#

Metrics for evaluating neural network performance.

nabla.nn.utils.metrics.accuracy(predictions, targets)[source]#

Compute classification accuracy.

Parameters:
  • predictions (Array) – Model predictions - either logits/probabilities [batch_size, num_classes] or class indices [batch_size]

  • targets (Array) – True labels - either one-hot [batch_size, num_classes] or indices [batch_size]

Returns:

Scalar accuracy value between 0 and 1

Return type:

Array

nabla.nn.utils.metrics.top_k_accuracy(predictions, targets, k=5)[source]#

Compute top-k classification accuracy.

Parameters:
  • predictions (Array) – Model predictions (logits or probabilities) [batch_size, num_classes]

  • targets (Array) – True labels [batch_size] (sparse format)

  • k (int) – Number of top predictions to consider

Returns:

Scalar top-k accuracy value between 0 and 1

Return type:

Array

nabla.nn.utils.metrics.precision(predictions, targets, num_classes, class_idx=0)[source]#

Compute precision for a specific class.

Precision = TP / (TP + FP)

Parameters:
  • predictions (Array) – Model predictions (logits) [batch_size, num_classes]

  • targets (Array) – True labels (sparse) [batch_size]

  • num_classes (int) – Total number of classes

  • class_idx (int) – Class index to compute precision for

Returns:

Scalar precision value for the specified class

Return type:

Array

nabla.nn.utils.metrics.recall(predictions, targets, num_classes, class_idx=0)[source]#

Compute recall for a specific class.

Recall = TP / (TP + FN)

Parameters:
  • predictions (Array) – Model predictions (logits) [batch_size, num_classes]

  • targets (Array) – True labels (sparse) [batch_size]

  • num_classes (int) – Total number of classes

  • class_idx (int) – Class index to compute recall for

Returns:

Scalar recall value for the specified class

Return type:

Array

nabla.nn.utils.metrics.f1_score(predictions, targets, num_classes, class_idx=0)[source]#

Compute F1 score for a specific class.

F1 = 2 * (precision * recall) / (precision + recall)

Parameters:
  • predictions (Array) – Model predictions (logits) [batch_size, num_classes]

  • targets (Array) – True labels (sparse) [batch_size]

  • num_classes (int) – Total number of classes

  • class_idx (int) – Class index to compute F1 score for

Returns:

Scalar F1 score for the specified class

Return type:

Array

nabla.nn.utils.metrics.mean_squared_error_metric(predictions, targets)[source]#

Compute MSE metric for regression tasks.

Parameters:
  • predictions (Array) – Model predictions [batch_size, …]

  • targets (Array) – True targets [batch_size, …]

Returns:

Scalar MSE value

Return type:

Array

nabla.nn.utils.metrics.mean_absolute_error_metric(predictions, targets)[source]#

Compute MAE metric for regression tasks.

Parameters:
  • predictions (Array) – Model predictions [batch_size, …]

  • targets (Array) – True targets [batch_size, …]

Returns:

Scalar MAE value

Return type:

Array

nabla.nn.utils.metrics.r_squared(predictions, targets)[source]#

Compute R-squared (coefficient of determination) for regression tasks.

R² = 1 - (SS_res / SS_tot) where SS_res = Σ(y_true - y_pred)² and SS_tot = Σ(y_true - y_mean)²

Parameters:
  • predictions (Array) – Model predictions [batch_size, …]

  • targets (Array) – True targets [batch_size, …]

Returns:

Scalar R² value

Return type:

Array

nabla.nn.utils.metrics.pearson_correlation(predictions, targets)[source]#

Compute Pearson correlation coefficient.

Parameters:
  • predictions (Array) – Model predictions [batch_size, …]

  • targets (Array) – True targets [batch_size, …]

Returns:

Scalar correlation coefficient

Return type:

Array