Regression#

Regression loss functions.

nabla.nn.losses.regression.mean_squared_error(predictions, targets)[source]#

Compute mean squared error loss.

Parameters:
  • predictions (Array) – Predicted values of shape (batch_size, …)

  • targets (Array) – Target values of shape (batch_size, …)

Returns:

Scalar loss value

Return type:

Array

nabla.nn.losses.regression.mean_absolute_error(predictions, targets)[source]#

Compute mean absolute error loss.

Parameters:
  • predictions (Array) – Predicted values of shape (batch_size, …)

  • targets (Array) – Target values of shape (batch_size, …)

Returns:

Scalar loss value

Return type:

Array

nabla.nn.losses.regression.huber_loss(predictions, targets, delta=1.0)[source]#

Compute Huber loss (smooth L1 loss).

Parameters:
  • predictions (Array) – Predicted values of shape (batch_size, …)

  • targets (Array) – Target values of shape (batch_size, …)

  • delta (float) – Threshold for switching between L1 and L2 loss

Returns:

Scalar loss value

Return type:

Array